

Leonardo De Bona Becker

Comportamento de geogrelhas em muro de solo reforçado e em ensaios de arrancamento

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio.

Orientadores: Alberto de Sampaio Ferraz Jardim Sayão Anna Laura Lopes da Silva Nunes Leandro de Moura Costa Filho

Rio de Janeiro, abril de 2006

Leonardo De Bona Becker

Comportamento de geogrelhas em muro de solo

reforçado e em ensaios de arrancamento

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Alberto de Sampaio Ferraz Jardim Sayão Orientador PUC-Rio

Ennio Marques Palmeira UnB

Mauricio Abramento

Luciano Vicente de Medeiros PUC-Rio

Sergio Augusto Barreto da Fontoura PUC-Rio

José Eugenio Leal Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 26 de abril de 2006

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização do autor, do orientador e da universidade.

Leonardo De Bona Becker

Graduou-se em Engenharia Civil pela Universidade Federal do Rio Grande do Sul em 1999. Ingressou no curso de mestrado em Engenharia Civil (Geotecnia) naquela universidade, no mesmo ano. Desenvolveu pesquisa de campo sobre fluência confinada de geotêxteis. Publicou artigos técnicos sobre o assunto em congressos nacionais e internacionais. Recebeu o Prêmio Icarahy da Silveira, conferido pela Associação Brasileira de Mecânica dos Solos e Engenharia Geotécnia à melhor dissertação de Mestrado do País, referente ao biênio 2000-2002. Ingressou no curso de doutorado em Engenharia Civil da PUC-Rio em 2001. É oficial do Corpo de Engenheiros da Marinha do Brasil.

Ficha Catalográfica

Becker, Leonardo De Bona

Comportamento de geogrelhas em muro de solo reforçado e em ensaios de arrancamento / Leonardo De Bona Becker ; orientadores: Alberto de Sampaio Ferraz Jardim Sayão, Anna Laura Lopes da Silva Nunes, Leandro de Moura Costa Filho. – Rio de Janeiro : PUC, Departamento de Engenharia civil, 2006.

322 f. : il. ; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia civil.

Inclui bibliografia.

 Engenharia civil – Teses. 2. Estruturas de contenção.
 Solo reforçado. 4. Geogrelhas. 5. Geossintéticos. I. Sayão, Alberto de Sampaio Ferraz Jardim. II. Nunes, Anna Laura Lopes da Silva. III. Costa Filho, Leandro de Moura. IV. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia civil. V. Título.

CDD: 624

Para minha esposa Ana Paula, com amor.

Agradecimentos

As palavras a seguir não podem expressar toda a minha gratidão. São somente palavras. Servem como um reconhecimento por toda a ajuda e apoio que recebi. A todos, meu humilde agradecimento.

Agradeço a Deus. O que recebi de bom, recebi Dele. As dificuldades que superei, superei com as forças que Ele me deu.

Agradeço à Ana Paula Fonseca Becker, minha esposa, por sua presença incansável, seu amor, seu otimismo e por ter sido a maior fonte de apoio e motivação para que esta Tese fosse concluída.

A meus pais, João e Lira, e minha irmã, Ana Carolina, agradeço pelo carinho e pela compreensão com minhas ausências e minha falta de tempo.

Ao meu tio Celso De Bona, por ter me motivado a iniciar esta caminhada e ter proporcionado as condições para que eu viesse ao Rio de Janeiro.

A meus sogros, Altamir e Ana Maria, e meus cunhados Ana Angélica e Mirinho, muito obrigado por terem permitido que a casa de vocês fosse minha casa também.

Tia Maria Eugênia, tio Nélson, meus primos Mateus, Felipe e Daniel, vó Leondina, obrigado pelo carinho com que fui recebido.

Ao Prof. Alberto Sayão, obrigado pela confiança e pela orientação.

À Prof.^a Anna Laura, obrigado pelo incentivo e pela motivação constantes.

Ao Prof. Leandro Costa F.º, agradeço pela confiança, pela oportunidade e pelas discussões técnicas.

Aos funcionários do Laboratório de Mecânica dos Solos da PUC-Rio, William, Amauri e José, obrigado pelo apoio nos ensaios e na instrumentação. Aos colegas Ana Cristina, Luís Eduardo, Maristâni, Laryssa e Saré, obrigado pela amizade.

À Carolina Costa, agradeço pelo auxílio com o Plaxis.

Aos Professores da PUC-Rio, obrigado pela formação.

Raquel e Patrícia, obrigado pelas várias ajudas e pela amizade.

À Shirley Baptistone, obrigado pela ajuda no idioma francês.

Ao Vinícius, agradeço pela auxílio na fase de campo da pesquisa.

Ao Sr. José Maria e à Iraí, obrigado por me ajudarem durante os ensaios de de campo.

À HUESKER, na pessoa do Eng.º Flávio Montez, obrigado pelo patrocínio e pela confiança.

Agradeço à ALCOA Alumínio S.A. e à LPS Consultoria e Engenharia Ltda.pela oportunidade realizar a fase de campo da pesquisa.

À Diretoria de Obras Civis da Marinha agradeço pela possibilidade de prosseguir até o final da Tese.

Resumo

Becker, Leonardo De Bona. Sayão, Alberto Sampaio Ferraz Jardim. **Comportamento de geogrelhas em muro de solo reforçado e em ensaios de arrancamento.** Rio de Janeiro, 2006. 322p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

No presente trabalho foi estudado o comportamento de um muro de solo reforçado com 5m de altura e 1700m de extensão, construído como parte do dique que compõe o Depósito de Resíduos de Bauxita 7 da ALCOA Alumínio S.A. em Poços de Caldas, MG. Neste muro foram empregados um solo residual siltoargiloso obtido no local e geogrelhas. O muro foi instrumentado para medição de deslocamentos horizontais e verticais durante a construção. Na mesma área, também foi construído um aterro experimental de 2,6m de altura que permitiu a realização de 16 ensaios de arrancamento de grandes dimensões. Foram realizados ensaios de laboratório para definir os parâmetros de resistência e deformabilidade do solo. Os parâmetros obtidos foram empregados em simulações numéricas da construção do muro e dos ensaios de arrancamento pelo Método dos Elementos Finitos, utilizando-se o programa PLAXIS 2D v.8. Os resultados obtidos demonstraram que os deslocamentos ocorridos durante a construção do muro são comparáveis a valores reportados por outros autores. As previsões numéricas da construção do muro e dos ensaios de arrancamento apresentaram boa concordância com os resultados medido em campo. Constatou-se que a resistência ao arrancamento obtida foi superior às previsões baseadas em formulações tradicionais da literatura.

Palavras-chave

Estruturas de contenção, solo reforçado, geogrelhas, geossintéticos, ensaios de arrancamento, muro de solo reforçado, monitoramento, análise numérica, método dos elementos finitos.

Abstract

Becker, Leonardo De Bona. Sayão, Alberto Sampaio Ferraz Jardim (Advisor). **Behavior of geogrids in reinforced soil wall and pullout tests.** Rio de Janeiro, 2006. 322p. D.Sc. Thesis – Department of Civil Engineering, Pontifícia Universidade Católica do Rio de Janeiro.

The behavior of a 5m high and 1700m long reinforced soil wall was studied in this work. The wall constitutes the upper part of a dike constructed in Poços de Caldas-MG, Brazil, by Alcoa Aluminum S.A. to contain Bauxite residues. The wall was constructed using geogrids and a residual silty-clay. Two wall sections were instrumented. Horizontal and vertical displacements were monitored during construction. An 2.6m high experimental fill was constructed to conduct 16 large-scale pullout tests. Soil laboratory tests were conducted to define the strength and deformability parameters. The construction of the wall and the pullout tests were simulated using the PLAXIS 2D v.8 Finite Element Method code. The numeric predictions agree well with the field results. The measured horizontal displacements show good agreement with results reported by other authors and the pullout resistance was found to be greater than the values estimated by traditional methods.

Keywords

Retaining structures, reinforced soil, geogrids, geosynthetics, pull-out tests, reinforced soil wall, monitoring, numeric simulations, Finite Element Method.

Sumário

1 Introdução	35
1.1. Considerações iniciais	35
1.2. Objetivos	36
1.3. Metodologia	36
1.4. Organização da tese	37
2 Estruturas de solo reforçado	39
2.1.	39
Introdução	39
2.1.1. Funções dos geossintéticos	40
2.1.2. Tipos de geossintéticos	42
2.1.3. Natureza e estrutura dos polímeros	43
2.2. Estruturas de solo reforçado	44
2.2.1. Sistemas construtivos de estruturas de contenção em solo	
reforçado	46
2.2.2. Estabilidade de maciços reforçados	54
2.2.3. Métodos de equilíbrio limite	58
2.2.4. Métodos baseados em condições de trabalho	67
2.2.5. Influência da compactação	79
2.2.6. Influência do comprimento dos reforços	86
2.2.7. Influência do faceamento	87
2.2.8. Simulações numéricas	91
2.2.9. Deslocamentos de face	94
	100
3 Ensaios em geogrelhas	106
3.1. Interação solo-geogrelha	106
3.2. Ensaios de cisalhamento direto	109
3.3. Ensaios de rampa	110
3.4. Ensaios de arrancamento	112
3.5. Fatores que influenciam a resistência ao arrancamento	118

3.5.1. Influência da parede frontal	118
3.5.2. Influência da rigidez do reforço	120
3.5.3. Influência da velocidade de ensaio	122
3.5.4. Influência da tensão normal	124
3.5.5. Influência da densidade relativa e dos parâmetros do solo	127
3.6. Modelos para previsão e interpretação de ensaios de arrancamen	to129
3.7. Parâmetros de resistência da interface	136
4 Descrição da obra	141
5 Descrição das seções instrumentadas	150
6 Descrição do aterro experimental	158
7 Ensaios de laboratório	170
7.1. Caracterização dos solos estudados	170
7.2. Ensaios de cisalhamento direto	172
7.3. Ensaios Triaxiais	179
7.4. Considerações finais	188
8 Resultados da instrumentação do muro	191
8.1. Resultados das "caixas suecas"	191
8.2. Resultados dos tell-tales	194
8.3. Resultados dos marcos topográficos	201
8.4. Testes de sobrecarga	206
8.5. Considerações finais	207
9 Resultados dos ensaios de arrancamento	209
9.1. Resultados dos ensaios de arrancamento	209
9.2. Descrição das rupturas e ensaios adicionais	230
9.3. Influência da tensão vertical na resistência ao arrancamento	244
9.4. Considerações finais	248
10 Analise numérica	250

10.1. Método dos elementos finitos	250
10.2. Modelos constitutivos	251
10.3. Simulação dos ensaios de arrancamento	258
10.4. Simulação da construção do muro de solo reforçado	273
10.5. Análise paramétrica	289
10.6. Avaliação estatística	295
10.7. Considerações finais	300
11 Conclusões	302
11.1.	302
Conclusões	302
11.2.	306
Sugestões para futuras pesquisas	306
12. Referências Bibliográficas	307

Lista de figuras

Figura 1 - Exemplo de função de separação: o geossintético impede a mistura	
entre a brita do aterro e o solo fino natural (Koerner, 1998).	41
Figura 2 - Resultados de ensaios triaxiais em areia densa sob tensão confinante	e de
210 kPa em amostras sem e com reforços. (Koerner, 1998).	42
Figura 3 - Exemplares típicos de geossintéticos, segundo Koerner (1998).	43
Figura 4 - Modelos moleculares dos polímeros polietileno (PE), polipropileno	
(PP) e poliéster (PETP), segundo den Hoedt, 1986.	44
Figura 5 - Custos de construção, por área de face, em função da altura de muro),
para várias soluções de contenção, conforme Elias et al. (2001).	45
Figura 6 - Divisão da massa de solo reforçado em duas zonas.	46
Figura 7- Muro de solo reforçado com geossintético e face de blocos de madei	ra,
Koerner (1998).	48
Figura 8 - Muro de solo reforçado com geogrelha e face em blocos de concreto),
segundo Bathurst (2002).	48
Figura 9 - Exemplos de blocos pré-moldados para faceamento de muro de solo)
reforçado, segundo Bathurst et al. (1993).	49
Figura 10 - Muro de solo reforçado auto-envelopado com geotêxtil (Koerner,	
1998).	50
Figura 11 - Muro de solo reforçado por geogrelhas com faceamento em blocos	de
pedra (Garg, 1998).	51
Figura 12 - Muro de solo reforçado por geossintéticos com faceamento em pre	eus
(Azambuja e Strauss, 1999).	51
Figura 13 - Muro de solo reforçado por geogrelhas com espaçamento variável	
(Azambuja e Strauss, 1999).	52
Figura 14 - Talude reforçado por geossintéticos com comprimento variável	
(Azambuja e Strauss, 1999).	52
Figura 15 - Instabilidade externa de muros de solo reforçado: a) tombamento,	b)
deslizamento e c) capacidade de carga insuficiente (Koerner, 1998).	55
Figura 16 - Mecanismos de ruptura interna em uma estrutura de solo reforçado)
(Milligan e Palmeira, 1987).	56

Figura 17 - Modos de ruptura interna idealizados, segundo Bathurst et al. (1993).57
Figura 18 - Configuração de um muro de solo reforçado, segundo Steward et al	•
(1977).	59
Figura 19 - Mecanismo de ruptura bilinear do modelo de Schmertmann et al.	
(1987).	63
Figura 20 - Ábaco para determinação do coeficiente de força do método de	
Schmertmann et al. (1987).	63
Figura 21 - Distribuição de deformações durante a construção em três camadas	
instrumentadas, segundo Zornberg et al. (1995).	64
Figura 22 - Modos de ruptura composta, adaptado de Alexiev e Silva (2003).	66
Tabela 3 - Comparações entre diferentes métodos de cálculo, conforme Silva e	
Vidal (1999).	66
Figura 23 - Equilíbrio interno da massa de solo reforçado, segundo Ehrlich e	
Mitchell (1994).	68
Figura 24 - Caminho de tensões assumido no modelo, segundo Ehrlich e Mitch	ell
(1994).	69
Figura 25 - Estado de tensões do solo nas proximidades do rolo compactador,	
segundo Ehrlich e Mitchell (1994).	71
Figura 26 - Ábacos para determinação da máxima tensão de tração nos reforços	3
em muros verticais, segundo Ehrlich e Mitchell (1994).	74
Figura 27 - Ábacos para determinação da máxima tensão de tração nos reforços	3,
para inclinação da face de 71º, segundo Dantas e Ehrlich (2000).	75
Figura 28 - Influências típicas da compactação e da rigidez solo-reforço, segun	do
Ehrlich e Mitchell (1994).	76
Figura 29 - Variação da razão K / Ka, em função da profundidade, para muros c	le
solo reforçado, segundo Elias e Christopher (1997).	78
Figura 30 - Lugar geométrico dos pontos de máxima tensão de tração nos	
reforços, segundo Dantas e Ehrlich (2000).	79
Figura 31 - Trajetória de tensões da compactação, segundo Ingold (1979).	80
Figura 32 - Comparação entre tensões verticais previstas e medidas, segundo	
Forssblad (1965).	81
Figura 33 - Distribuição de tensões horizontais para o caso de a) uma camada	
compactada e b) várias camadas sucessivas, segundo Ingold (1979).	83

Figura 34 - Caso geral de distribuição de tensões horizontais para estruturas de	
contenção convencionais, segundo Ingold (1979).	84
Figura 35 - Influência da compactação na tração atuante nos reforços, para muro)S
de solo reforçado, com face flexível e diferentes índices de rigidez solo-reforço,	,
conforme Loiola (2001).	85
Figura 36 - Estimativas de tensões horizontais em solos compactados.	86
Figura 37 - Efeito do comprimento de reforço na posição da superfície de ruptur	a,
segundo Porbaha (1999).	87
Figura 38 - Força horizontal necessária ao equilíbrio da estrutura normalizada va	5.
variação do comprimento dos reforços, adaptada de Ho e Rowe (1996).	88
Figura 39 - Influência da rigidez da face na tração atuante nos reforços, sem	
considerar a compactação do solo, conforme Loiola (2001).	89
Figura 40 - Tensões horizontais contra o faceamento devido às zonas de solo não	0
reforçado, segundo Soon e Koerner (1997).	90
Figura 41 - Resistência de conexão face-reforço requerida devido à recalques do)
solo adjacente à face para diferentes tipos de geossintéticos, segundo Soon e	
Koerner (1997).	90
Figura 42 - Distribuição de deformações ao longo dos reforços para dois valores	3
de fator de rigidez, segundo Rowe e Ho (1998).	93
Figura 43 - Curva empírica para estimativa do deslocamento horizontal máximo	1
em muros de solo reforçado, segundo Elias et al. (2001).	95
Figura 44 - Deslocamentos horizontais após a construção, segundo Bathurst et a	1.
(1999).	96
Figura 45 - Comparação entre deslocamentos previstos por simulação numérica	e
medidos para o muro 1, conforme Bathurst et al. (2002).	97
Figura 46 - Planos de a) máxima resistência ao cisalhamento mobilizada e b)	
extensão nula do solo, para o solo no tardoz de um muro de arrimo que sofre	
rotação ao redor do pé, segundo Jewell e Milligan (1989).	99
Figura 47 - Hipóteses de a) zonas de esforços em solos reforçados e b)	
distribuição de tensões de tração em um reforço, segundo Jewell e Milligan	
(1989).	99
Figura 48 - Ábacos para determinar os deslocamentos horizontais para	
espaçamento dos reforços a) constante ou b) variável, segundo Jewell e Milligar	1

(1989).	100
Figura 49 - Perfis de deslocamentos horizontais do muro de teste, segundo	
Tsukada et al. (1998).	101
Figura 50 - Deslocamentos horizontais do muro protótipo, segundo Benjamin	et
al. (2003).	102
Figura 51 - Deslocamentos horizontais obtidos por simulação numérica, segu	ndo
Benjamin et al. (2003).	103
Figura 52 - Índice de deformação horizontal máxima da face de muros de solo	0
reforçado, em função do fator de rigidez do reforço e do ângulo de atrito do s	olo,
(Rowe e Ho, 1998).	104
Figura 53 - Índice de deformação horizontal máxima da face de muros de solo	0
reforçado, em função do ângulo de atrito solo-faceamento (\Box), módulo de Yo	oung
do solo (E _s) e ângulo de atrito solo-reforço(\Box_{rs}), segundo Rowe e Ho (1998).	105
Figura 54 - Mecanismos de interação solo-geogrelha (adaptado de Wilson-Fa	hmy
e Koerner, 1993).	107
Figura 55 - Mecanismos de ruptura em uma estrutura de solo reforçado (Milli	igan
e Palmeira, 1987).	108
Figura 56 - Ensaios de: a) cisalhamento direto da interface solo-reforço, b)	
cisalhamento direto com reforço inclinado e c) arrancamento do reforço.	109
Figura 57 - Ensaios de cisalhamento direto em interface solo-geossintético	
(adaptado de Ingold, 1984).	110
Figura 58 - Arranjo esquemático de um ensaio de cisalhamento direto com ref	forço
inclinado e dois tipos de solo (Sayão e Teixeira, 1995).	111
Figura 59 – Representação esquemática de um ensaio de rampa (Melo et al.,	
2003).	112
Figura 60 - Configuração típica de um ensaio de arrancamento, segundo Farra	ag et
al. (1993).	114
Figura 61 - Garra tipo rolo (adaptado de DIN EN ISO 10319, 1993).	114
Figura 62 - Garra de chapas aparafusadas (adaptado de DIN EN ISO 10319,	
2005).	115
Figura 63 - Vista superior da geogrelha no ensaio de arrancamento (adaptado	de
Perkis e Edens, 2002).	116
Figura 64 - Detalhe da manga, segundo Perkis e Edens (2002).	118

Figura 65 - Distribuições de deslocamentos e deformações para ensaios de	
arrancamento em equipamento com a) face rígida e b) face flexível (Sugimoto	o et
al., 2001).	119
Figura 66 - Distribuição de tensões de aderência ao longo das geogrelhas para	a
diferentes valores de rigidez (adaptado de Sugimoto et al., 2001).	121
Figura 67 - Influência da velocidade nos ensaios de arrancamento: a) resistênce	cia
ao arrancamento e b) deslocamentos ao longo do reforço, segundo Farrag et a	ıl.
(1993).	123
Figura 68 - Influência da velocidade nos ensaios de arrancamento (Lopes e	
Ladeira, 1996).	124
Figura 69 - Influência da tensão normal em ensaios de arrancamento de	
geogrelhas em solos granulares (Lentz e Pyatt, 1988).	125
Figura 70 - Influência da tensão normal na a) resistência ao arrancamento e b)
distribuição de deslocamentos ao longo da amostra (Farrag et al., 1993).	126
Figura 71 – Variação da resistência ao arrancamento em função da tensão nor	rmal,
para solo silto argiloso (adaptado de Sieira, 2003).	127
Figura 72 - Efeito do peso específico no comportamento de arrancamento de	
geogrelhas em areia (Farrag et al., 1993).	128
Figura 73 – Mecanismo de ruptura por puncionamento dos elementos transve	rsais
da geogrelha em ensaios de arrancamento (Jewell et al., 1984).	130
Figura 74 – Mecanismo de ruptura generalizada dos elementos transversais da	a
geogrelha em ensaios de arrancamento (Peterson e Anderson, 1980).	131
Figura 75 – Estimativa das parcelas da resistência ao arrancamento: a) geogre	elha
A, b) geogrelha B e c) geogrelha C (Wilson-Fahmy et al., 1994).	134
Figura 76 – Mobilização de resistência ao arrancamento: a) interação entre	
membros transversais e b) redução da resistência passiva contra o membro	
transversal devido à região de solo fofo (Palmeira, 2004).	135
Figura 77 – Método da área efetiva: a) esquema para determinação de $T_r e L_T$	e b)
envoltórias de resistência ao arrancamento (adaptado de Ochiai et al., 1996).	138
Figura 78 – Aplicação do método da área corrigida a ensaios de arrancamento	o em
geogrelha (Bonczkiewicz et al., 1988).	138
Figura 79 – Estimativa do fator F em ensaios de arrancamento (Sayão et al.,	
2002).	140

Figura 80 – Seção transversal típica do dique do DRB#7.	141
Figura 81 – Detalhe da seção transversal típica do muro de solo reforçado.	142
Figura 82 – Vista aérea do DRB#7 em operação.	142
Figura 83 - Instalação da primeira camada de geogrelha do muro.	145
Figura 84 - Detalhe da fixação da geogrelha por grampo de metal em forma d	e U
invertido cravado no solo.	145
Figura 85 - Posicionamento da primeira fiada de sacaria assentada com soque	etes
manuais.	146
Figura 86 - Lançamento da camada de solo sobre a geogrelha por trator de est	eiras
D4.	146
Figura 87 – Gradeamento para redução e uniformização da umidade da camad	la de
solo lançada.	147
Figura 88 - Compactação do solo lançado próximo à sacaria por meio de "sap	o".147
Figura 89 - Compactação da camada por meio de rolo compressor vibratório	pata
curta CA-25	148
Figura 90 - Retirada de cilindro de metal cravado no solo para realização de	
controle de compactação.	148
Figura 91 - Nivelamento de camada compactada por meio de moto-nivelador	a
para permitir o lançamento de uma nova camada de geogrelha.	149
Figura 92 - Planta parcial do depósito de resíduos de bauxita DRB#7.	150
Figura 93 - Disposição dos tell-tales na geogrelha e vista da estrutura de supo	orte
do equipamento de leitura na face do muro reforçado.	152
Figura 94 - Canaleta de drenagem recém concretada com os primeiros painéir	s de
andaime já posicionados.	152
Figura 95 - Detalhe da fixação da base da estrutura na canaleta a ser concretad	la.153
Figura 96 - Teste de sobrecarga realizado na seção E33+12, no muro já concl	uído.
	153
Figura 97 - Marco topográfico instalado na face do muro, entre duas camadas	s de
sacaria.	154
Figura 98 - Procedimento de medição dos deslocamentos da face por topogra	fia.
	155
Figura 99 – Detalhes da caixa sueca: a) vista dos três tubos no interior da caix	ka e
b) vista da tampa metálica e parafusos.	156

Figura 100 - Posicionamento dos tell-tales nas geogrelhas, com distâncias	
referenciadas à face do muro.	157
Figura 101 - Seção transversal instrumentada com tell-tales, marcos superfici	ais e
caixas suecas.	157
Figura 102 - Planta do aterro experimental.	158
Figura 103 - Camada de solo compactado, nivelada, com três amostras de	
geogrelha instaladas.	161
Figura 104 - Detalhe da manga metálica, dos tubos dos tell-tales e dos cabos	de
aço de amarração dos trilhos.	162
Figura 105 - Vista da amostra de geogrelha instrumentada imediatamente ante	es do
lançamento da camada de solo sobrejacente.	162
Figura 106 - Detalhe da presilha de fixação do <i>tell-tale</i> na geogrelha.	163
Figura 107 - Detalhe da extremidade da amostra de geogrelha e dos tubos de s	saída
dos tell-tales da amostra posicionada do lado oposto do aterro.	163
Figura 108 - Vista da face do aterro com o sistema de leitura dos tell-tales de	uma
geogrelha instalada na face oposta.	164
Figura 109 - Vista geral do aterro experimental em fase final de construção.	164
Figura 110 - Esquema de posicionamento dos tell-tales nas geogrelhas 35 e 5	5A.
	165
Figura 111 - Detalhe da superfície interna da garra após a colagem da lixa na	
região de um parafuso passante.	166
Figura 112 - Detalhe da fixação da geogrelha à garra.	166
Figura 113 - Vista superior do sistema de arrancamento (garra, esticador e cé	lula
de carga).	167
Figura 114 – Curva granulométrica do solo estudado.	171
Figura 115 - Curvas tensão cisalhante vs. deslocamento horizontal na condiçã	ão
inundada, bloco 6.	173
Figura 116 – Curvas deslocamento vertical vs. deslocamento horizontal na	
condição inundada, bloco 6.	173
Figura 117 - Curvas tensão cisalhante vs. deslocamento horizontal na umidad	le
natural, bloco 6.	174
Figura 118 – Curvas deslocamento vertical vs. deslocamento horizontal na	
umidade natural, bloco 6.	174

Figura 119 - Envoltórias de resistência ao cisalhamento para as duas condiçõe	es de
umidade, bloco 6.	175
Figura 120 - Curvas tensão cisalhante vs. deslocamento horizontal na umidad	e
natural, bloco 5.	175
Figura 121 – Curvas deslocamento vertical vs. deslocamento horizontal na	
umidade natural, bloco 5.	176
Figura 122 – Envoltória de resistência ao cisalhamento para umidade natural,	
bloco 5.	176
Figura 123 – Curvas tensão desviadora vs. deformação axial para ensaios CID),
bloco 4.	181
Figura 124 – Curvas deformação volumétrica vs. deformação axial para ensaio	os
CID, bloco 4.	182
Figura 125 – Envoltórias de resistência ao cisalhamento de pico e a volume	
constante, bloco 4.	182
Figura 126 – Curvas tensão desviadora vs. deformação axial para ensaios CID),
bloco 1.	183
Figura 127 – Curvas deformação volumétrica vs. deformação axial para ensaio	os
CID, bloco 1.	183
Figura 128 – Envoltórias de resistência ao cisalhamento de pico e a volume	
constante, bloco 1.	184
Figura 129 – Excesso de poropressão vs. deformação axial para o ensaio UU,	
bloco 1.	185
Figura 130 - Curvas tensão desviadora (total e efetiva) vs. deformação axial p	ara
o ensaio UU, bloco 1.	185
Figura 131 - Rigidez secante a 50% da tensão desviadora de ruptura vs. tensão	0
confinante, bloco 1.	186
Figura 132 - Rigidez secante a 50% da tensão desviadora de ruptura vs. tensão	0
confinante, bloco 4.	187
Figura 133 - Recalques na base do muro de solo reforçado para a seção E20+1	5.191
Figura 134 - Recalques registrados na base do muro de solo reforçado para a	
seção E33+12.	192
Figura 135 - Recalques corrigidos na base do muro de solo reforçado para a se	eção
E33+12.	193

Figura 136 - Deslocamentos medidos pelos tell-tales da seção E20+15 na altur	a de
40 cm, em função da altura de muro construída.	195
Figura 137 - Deslocamentos medidos pelos tell-tales da seção E20+15 na altur	a de
190 cm, em função da altura de muro construída.	195
Figura 138 - Deslocamentos medidos pelos tell-tales da seção E20+15 na altur	a de
370 cm.	196
Figura 139 - Deslocamentos medidos pelos tell-tales da seção E33+12 na altur	a de
40 cm.	196
Figura 140 - Deslocamentos medidos pelos tell-tales da seção E33+12 na altur	a de
190 cm.	197
Figura 141 - Deslocamentos medidos pelos tell-tales da seção E33+12 na altur	a de
370 cm.	197
Figura 142 – Distribuição dos deslocamentos horizontais na geogrelha de 3700	cm
de altura, seção E20+15.	199
Figura 143 – Distribuição dos deslocamentos horizontais na geogrelha de 1900	cm
de altura, seção E20+15.	200
Figura 145 - Deslocamentos horizontais dos marcos topográficos em função d	a
altura de muro na seção E20+15.	203
Figura 146 - Deslocamentos horizontais dos marcos topográficos em função d	a
altura de muro na seção E33+12.	203
Figura 147 - Perfil de deslocamentos horizontais dos marcos topográficos em	
função da altura de muro na seção E20+15.	204
Figura 148 - Perfil de deslocamentos horizontais dos marcos topográficos em	
função da altura de muro na seção E33+12.	204
Figura 149 – Deslocamentos horizontais da face obtidos por topografia, nas du	ıas
seções instrumentadas.	205
Figura 150 – Comparação entre o deslocamento horizontal máximo medido na	ı
seção E20+15 e a correlação proposta por Elias et al. (2001).	206
Figura 151 – Ensaio de sobrecarga com caminhão carregado na seção E20+15.	207
Figura 152- Carga distribuída em função do deslocamento dos tell-tales da	
geogrelha 35, lado seco e tensão confinante de 7,2kPa.	210
Figura 153 - Distribuição dos deslocamentos dos tell-tales ao longo da geogre	lha
35, lado seco e tensão confinante de 7,2kPa.	210

Figura 154 - Carga distribuída em função do deslocamento dos tell-tales da	
geogrelha 35, lado seco e tensão confinante de 12,0kPa.	211
Figura 155 - Distribuição dos deslocamentos dos tell-tales ao longo da geogre	lha
35, lado seco e tensão confinante de 12,0kPa.	211
Figura 156 - Carga distribuída em função do deslocamento dos tell-tales da	
geogrelha 35, lado seco e tensão confinante de 14,3kPa.	212
Figura 157 - Distribuição dos deslocamentos dos tell-tales ao longo da geogre	elha
35, lado seco e tensão confinante de 14,3kPa.	212
Figura 158 - Carga distribuída em função do deslocamento dos tell-tales da	
geogrelha 55A, lado úmido e tensão confinante de 10,7kPa.	213
Figura 159 - Distribuição dos deslocamentos dos tell-tales ao longo da geogre	elha
55A, lado úmido e tensão confinante de 10,7kPa.	213
Figura 160 - Carga distribuída em função do deslocamento dos tell-tales da	
geogrelha 55A, lado úmido e tensão confinante de 14,3kPa.	214
Figura 161 - Distribuição dos deslocamentos dos tell-tales ao longo da geogre	elha
55A, lado úmido e tensão confinante de 14,3kPa.	214
Figura 162 - Carga distribuída em função do deslocamento dos tell-tales da	
geogrelha 55A, lado úmido e tensão confinante de 25,1kPa.	215
Figura 164 - Carga distribuída em função do deslocamento dos tell-tales da	
geogrelha 55A, lado seco e tensão confinante de 10,7kPa.	216
Figura 165- Distribuição dos deslocamentos dos tell-tales ao longo da geogrel	lha
55A, lado seco e tensão confinante de 10,7kPa.	216
Figura 166 - Carga distribuída em função do deslocamento dos tell-tales da	
geogrelha 55A, lado seco e tensão confinante de 14,3kPa – Primeiro ensaio.	217
Figura 167 - Distribuição dos deslocamentos dos tell-tales ao longo da geogre	lha
55A, lado seco e tensão confinante de 14,3kPa – Primeiro ensaio.	217
Figura 168 - Carga distribuída em função do deslocamento dos tell-tales da	
geogrelha 55A, lado seco e tensão confinante de 14,3kPa – Segundo ensaio.	218
Figura 169 - Distribuição dos deslocamentos dos tell-tales ao longo da geogre	elha
55A, lado seco e tensão confinante de 14,3kPa – Segundo ensaio.	218
Figura 170 - Carga distribuída em função do deslocamento dos tell-tales da	
geogrelha 55A, lado seco e tensão confinante de 23,3kPa – Ensaio piloto.	219
Figura 171 - Distribuição dos deslocamentos dos tell-tales ao longo da geogre	elha

55A, lado seco e tensão confinante de 23,3kPa – Ensaio piloto.	219
Figura 172 - Carga distribuída em função do deslocamento dos tell-tales da	
geogrelha 55A, lado seco e tensão confinante de 25,6kPa.	220
Figura 173 - Distribuição dos deslocamentos dos tell-tales ao longo da geogra	elha
55A, lado seco e tensão confinante de 25,6kPa.	220
Figura 174 - Carga distribuída em função do deslocamento dos tell-tales da	
geogrelha 55A, lado seco e tensão confinante de 41,3kPa.	221
Figura 175 - Distribuição dos deslocamentos dos tell-tales ao longo da geogra	elha
55A, lado seco e tensão confinante de 41,3kPa.	221
Figura 176 - Carga distribuída em função do deslocamento dos tell-tales da	
geogrelha 55B, lado úmido e tensão confinante de 5,4kPa.	222
Figura 177 - Distribuição dos deslocamentos dos tell-tales, ao longo da geogr	elha
55B, lado úmido e tensão confinante de 5,4kPa.	222
Figura 178 - Carga distribuída em função do deslocamento dos tell-tales da	
geogrelha 55B, lado úmido e tensão confinante de 12,5kPa.	223
Figura 179 - Distribuição dos deslocamentos dos tell-tales ao longo da geogra	elha
55B, lado úmido e tensão confinante de 12,5kPa.	223
Figura 180 - Carga distribuída em função do deslocamento dos tell-tales da	
geogrelha 55B, lado úmido e tensão confinante de 15,8kPa.	224
Figura 181 - Distribuição dos deslocamentos dos tell-tales ao longo da geogra	elha
55B, lado úmido e tensão confinante de 15,8kPa.	224
Figura 182 - Carga distribuída em função do deslocamento dos tell-tales da	
geogrelha 55B, lado seco e tensão confinante de 11,3kPa.	225
Figura 183 - Distribuição dos deslocamentos dos tell-tales ao longo da geogra	elha
55B, lado seco e tensão confinante de 11,3kPa.	225
Figura 184 – Estimativa preliminar da resistência ao arrancamento por três	
métodos.	227
Figura 185 - Esquema do modo de ruptura da geogrelha 35, lado seco e tensã	0
confinante de 7,2kPa.	231
Figura 187 - Esquema do modo de ruptura da geogrelha 55B, lado seco e tens	são
confinante de 11,3kPa.	232
Figura 188 - Esquema do modo de ruptura da geogrelha 55B, lado úmido e te	nsão
confinante de 5,4kPa.	232

Figura 189 - Esquema do modo de ruptura da geogrelha 55B, lado úmido e t	ensão
confinante de 12,5kPa.	233
Figura 190 - Esquema do modo de ruptura da geogrelha 55B, lado úmido e t	ensão
confinante de 15,8kPa.	233
Figura 191 - Esquema do modo de ruptura da geogrelha 55A, lado seco e ter	ısão
confinante de 10,7kPa.	234
Figura 193 - Esquema do modo de ruptura da geogrelha 55A lado seco e ten	são
confinante de 41,3kPa.	235
Figura 194 - Esquema do modo de ruptura da geogrelha 55A, lado úmido e t	ensão
confinante de 10,7kPa.	235
Figura 195 - Geogrelha exumada após ensaio de arrancamento.	236
Figura 196 - Porcentagem da resistência à tração das geogrelhas 35 na ruptur	ra. 238
Figura 198 - Porcentagem da resistência à tração das geogrelhas 55A na rupt	ura.23
Figura 199 - Porcentagem da resistência à tração das geogrelhas 55A na rup	tura
dos ensaios com bloco de concreto.	240
Figura 200 - Esquema dos ensaio de tração das geogrelhas ancoradas no blo	co de
concreto.	240
Figura 201 – Ruptura das longarinas da geogrelha ancorada no bloco de con	creto
no ensaio de tração.	241
Figura 202 – Ruptura precoce de um elemento longitudinal de geogrelha.	242
Figura 203 – Esquema de um ensaio hipotético com garra não perpendicular	ao
eixo da amostra.	243
Figura 204 – Curvas de máxima carga distribuída atuante nas geogrelhas vs.	
tensão vertical.	245
Figura 205 - Variação da tensão cisalhante equivalente média na interface s	olo-
geossintético, no comprimento mobilizado, em função da tensão vertical efet	iva.24
Figura 206 – Tensões cisalhantes equivalente prevista e mobilizada na interf	ace
vs. tensão vertical.	248
Figura 207 - Relação tensão-deformação hiperbólica para um ensaio drenado	o de
compressão triaxial (Brinkgreve e Vermeer, 1998).	254
Figura 208 - Definição de E_{oed}^{ref} em ensaios oedométricos (Brinkgreve e Ver	meer,
1998).	255

Figura 209 – Resultados de ensaios de tração "faixa larga" em laboratório, para as

geogrelhas do tipo 55A (Huesker, 2001).	260
Figura 210 - Resultados de ensaios de tração "faixa larga" em laboratório, pa	ra as
geogrelhas do tipo 35 (Huesker, 2001).	260
Figura 211 - Distribuição dos deslocamentos dos tell-tales, ao longo da geogr	elha,
para os ensaios 9, 10 e 15, com carga distribuída igual a 20kN/m.	261
Figura 212 – Seção típica dos ensaios de arrancamento no campo.	261
Figura 213 - Geometria empregada nas simulações dos ensaios de arrancamen	to.26
Figura 214 - Detalhe da geometria empregada para representar a manga metá	lica
(com deslocamentos restritos) e a aplicação de carregamento à geogrelha.	263
Figura 215 - Carga distribuída ao longo da geogrelha, após a compactação, pa	ara
condição de manga fixa.	264
Figura 216 - Deslocamentos vetoriais após a aplicação do carregamento de	
20kN/m.	265
Figura 217 - Tensões verticais antes da aplicação do carregamento de 20kN/m	.265
Figura 218 - Tensões horizontais após a aplicação do carregamento de 20kN/r	n.266
Figura 219 - Deslocamentos horizontais da geogrelha após a aplicação do	
carregamento de 20kN/m.	266
Figura 220 - Comparação dos deslocamentos horizontais da geogrelha obtidos	s nos
ensaios de campo e na simulação numérica, para cargas distribuídas de 20kN	/m e
$\sigma'_{v} = 14,3$ kPa.	267
Figura 221 - Deslocamentos horizontais da geogrelha obtidos por simulação	
numérica e pelos ensaios de campo, para carga distribuída de 20kN/m e	
σ'_v =14,3kPa e redução na rigidez da geogrelha.	268
Figura 222 - Deslocamentos horizontais da geogrelha obtidos por simulação	
numérica e pelos ensaios de campo, para carga distribuída de 20kN/m e	
σ'_{v} =14,3kPa, reduzindo a rigidez da geogrelha e aumentando a rigidez do solo	o.269
Figura 223 - Deslocamentos horizontais da geogrelha obtidos por simulação	
numérica e pelos ensaios de campo, para carga distribuída de 20kN/m e	
σ'_{v} =14,3kPa, variando a coesão do solo, reduzindo a rigidez da geogrelha e	
aumentando a rigidez do solo.	270
Figura 224 - Deslocamentos horizontais da geogrelha obtidos por simulação	
numérica e pelos ensaios de campo, para carga distribuída de 20kN/m e	
σ'_{v} =14,3kPa, variando a coesão do solo e reduzindo a rigidez da geogrelha.	270

Figura 225 - Deslocamentos horizontais da geogrelha obtidos por ensaios de	
campo e simulação numérica, para cargas distribuídas de 10, 20 e 30kN/m e	
$\sigma'_{v}=14,3$ kPa.	272
Figura 226 – Distribuições de deslocamentos ao longo da amostra para ensaio	s de
arrancamento com e sem manga.	273
Figura 227 - Versão inicial da seção transversal do muro empregada nas análi	se
numéricas.	274
Figura 228 - Seção transversal do muro considerando a compactação consider	ada
na primeira versão da simulação numérica.	275
Figura 229 - Detalhe da versão final da geometria do muro, considerando a	
compactação e a presença da sacaria.	277
Figura 230 - Malha de elementos finitos gerada para a versão final da geomet	ria
da seção transversal do muro.	278
Figura 231 - Deformada da malha de elementos finitos após construção de 450) cm
de muro.	279
Figura 232 - Detalhe dos deslocamentos horizontais na massa de solo reforçad	o.279
Figura 233 - Perfil de deslocamentos horizontais da face.	280
Figura 234 - Deslocamentos horizontais para a geogrelha de 370 cm de altura.	280
Figura 235 - Deslocamentos horizontais para a geogrelha de 190 cm de altura	.281
Figura 236 - Deslocamentos horizontais para a geogrelha de 40 cm de altura.	281
Figura 237 - Comparação entre os deslocamentos horizontais da face obtidos	por
topografia e por simulação numérica, para a seção E20+15.	282
Figura 238 - Comparação entre os deslocamentos horizontais da face obtidos	por
topografia e por simulação numérica, para a seção E33+12.	282
Figura 239 - Comparação entre os deslocamentos horizontais da face obtidos	por
topografia, nas duas seções instrumentadas, e por simulação numérica.	283
Figura 240 - Comparação entre os deslocamentos horizontais na geogrelha de	
370cm de altura, obtidos por simulação numérica e por tell-tales.	284
Figura 241 - Comparação entre os deslocamentos horizontais na geogrelha de	
190cm de altura, obtidos por simulação numérica e por tell-tales.	285
Figura 242 - Comparação entre os deslocamentos horizontais na geogrelha de	
40cm de altura, obtidos por simulação numérica e por tell-tales.	285
Figura 243 - Esquema de obtenção de forças distribuías a partir dos	

deslocamentos observados nos tell-tales.	286
Figura 244 - Comparação entre a carga distribuída prevista pela simulação	
numérica e a calculada a partir dos deslocamentos dos tell-tales da geogrelha	de
370cm de altura.	287
Figura 245 - Comparação entre a carga distribuída prevista pela simulação	
numérica e a calculada a partir dos deslocamentos dos tell-tales da geogrelha	de
190cm de altura.	287
Figura 246 - Comparação entre a carga distribuída prevista pela simulação	
numérica e a calculada a partir dos deslocamentos dos tell-tales da geogrelha	de
40cm de altura.	288
Figura 247 - Influência das reduções de parâmetros de resistência e rigidez no)S
deslocamentos horizontais da face.	291
Figura 248 - Influência dos acréscimos em parâmetros de resistência e rigidez	z nos
deslocamentos horizontais da face.	291
Figura 249 - Influência dos acréscimos em parâmetros de rigidez da sacaria n	IOS
deslocamentos horizontais da face.	292
Figura 250 - Representação esquemática do efeito da rigidez da sacaria no	
deslocamento horizontal máximo da face.	293
Figura 251 - Influência da redução de 50% do intercepto coesivo e dos parâm	etros
de rigidez nos deslocamentos horizontais da face.	294
Figura 252 - Deformada exagerada da malha de elementos finitos, após a	
compactação da última camada de solo.	294
Figura 253 - Comparação do efeito das variações de parâmetros no deslocam	ento
horizontal máximo da face.	295
Figura 254 - Componentes da variância do deslocamento horizontal máximo	da
face do muro.	300

Lista de Tabelas

Tabela	1	Material para reaterro compactado em estruturas de solo reforçado – requisitos.	53
Tabela	2	Métodos para dimensionamento de estruturas de contenção em solo reforçado, adaptado de Abramento (2002).	58
Tabela	3	Comparações entre diferentes métodos de cálculo, conforme Silva e Vidal (1999).	66
Tabela	4	Características de análises numéricas citadas na literatura.	92
Tabela	5	Características de ensaios de arrancamento de diversos autores.	117
Tabela	6	Influência da tensão normal (Farrag et al., 1993).	127
Tabela	7	Características das geogrelhas (Wilson-Fahmy et al., 1994).	134
Tabela	8	Valores típicos para os fatores F^* e a, segundo Holtz et al. (1998).	139
Tabela	9	Propriedades médias de projeto do solo empregado.	143
Tabela	10	Propriedades nominais das geogrelhas (HUESKER 1999).	143
Tabela	11	Instrumentos empregados no monitoramento do muro de solo reforçado.	156
Tabela	12	Condições de ensaio projetadas para o aterro experimental.	159
Tabela	13	Características das camadas do aterro experimental, lado seco.	168
Tabela	14	Características das camadas do aterro experimental, lado úmido.	169
Tabela	15	Locação dos blocos de solo indeformado.	170
Tabela	16	Índices físicos das amostras nos ensaios de cisalhamento direto.	178
Tabela	17	Parâmetros de resistência dos ensaios de cisalhamento direto.	178
Tabela	18	Índices físicos das amostras dos ensaios triaxiais.	181
Tabela	19	Parâmetros de resistência e deformabilidade dos ensaios triaxiais.	188
Tabela	20	Resumo das condições de ensaio e dos parâmetros de resistência e deformabilidade.	190
Tabela	21	Condições e resultados dos ensaios das geogrelhas do aterro experimental.	226

- Tabela 22 Resultados dos ensaios de tração das geogrelhas ancoradas em 239 concreto.
 Tabela 23 Parâmetros do modelo Hardening Soil adotados para o solo 259 estudado
 Tabela 24 Parâmetros de rigidez axial das geogrelhas empregados na 259 análise numérica
- Tabela 25Parâmetros do modelo linear elástico para metal e "gelatina"264
- Tabela 26Coeficiente de variação de parâmetros de resistência e rigidez.297
- Tabela 27Valor médio e coeficiente de variação dos parâmetros de 298
resistência e rigidez.
- Tabela 28Cálculo da variância do deslocamento horizontal máximo da 299
face.

Lista de Símbolos

[B]	matriz deformação-deslocamento
[C]	matriz tensão-deformação.
[K]	matriz de rigidez global
{e}	vetor de deformações
{Q}	vetor de cargas global.
{s}	vetor de tensões
{u}	vetor de deslocamentos nodais global
а	adesão da interface solo-geossintético
α	fator de correção de efeito escala
a, b	constantes
A _B	área da seção transversal dos elementos transversais
A_L	área lateral dos elementos longitudinais
an	constantes polinomiais
Ar	área transversal do reforço
A_{T}	área lateral dos elementos transversais
α_t , α_o	ângulos atual e inicial entre os segmentos de reta PAPB e PAPMi.
В	largura da amostra
В	largura do elemento de carregamento
β	extensibilidade relativa solo-reforço.
c'	intercepto coesivo do solo
δ	ângulo de atrito da interface solo-geossintético.
	variação do deslocamento horizontal máximo da face causada por uma
$\delta(u_{m\acute{a}x})$	variação δX_i
ΔL	acréscimo de comprimento na ruptura, em ensaio de faixa larga
$\Delta \sigma'_{v}$	tensão vertical induzida pelo equipamento de compactação.
δX_i	variação aplicada à variável X _i
ε	deformação axial.
E	módulo de elasticidade do solo

E(X)	média do parâmetro X.
ϵ'_v^p	taxa de deformação plástica volumétrica
E ₅₀	rigidez secante correspondente à metade da tensão desviadora de ruptura
	rigidez secante correspondente à metade da tensão desviadora de ruptura
$E_{50}{}^{ref}$	para uma tensão confinante de referência p ^{ref}
Ea	empuxo ativo
ϵ_a^{e}	deformação elástica axial.
$\epsilon_a^{\ p}$	deformação plástica axial
ϵ_{ax}	deformação axial
E _{oed}	rigidez tangente para deformações volumétricas
	rigidez tangente para uma tensão vertical de referência p ^{ref} obtida em ensaio
$E_{oed}^{\ ref}$	oedométrico.
E_r	módulo de rigidez do reforço
E_{ur}	rigidez secante para trajetórias de descarregamento e recarregamento e
	rigidez secante para trajetórias de descarregamento e recarregamento para
$E_{ur}^{\ ref}$	uma tensão confinante de referência p ^{ref} .
${\epsilon_v}^p$	deformação plástica volumétrica
φ	ângulo de atrito do solo.
f	fator de aderência
φ	ângulo de atrito
f	função de plastificação
	força por unidade de largura, no momento da ruptura, em ensaio de faixa
F	larga
F*	fator de resistência ao arrancamento
ϕ_{cv}	ângulo de atrito a volume constante
	força média por unidade de largura no i-ésimo trecho da geogrelha (entre os
Fi	pontos i e i+1)
$\boldsymbol{\phi}_m$	ângulo de atrito mobilizado
ϕ_{ps}	ângulo de atrito de estado plano de deformações.
FS _a	fator de segurança ao arrancamento, de 1,3 a 1,5
FS_{g}	fator de segurança global da estrutura, geralmente entre 1,3 e 1,5.

γ	peso específico do solo
γ	peso específico do solo
γ'^p	taxa de deformação plástica de cisalhamento.
γ^{p}	deformação plástica de cisalhamento.
	altura da estrutura, podendo incluir uma altura equivalente de sobrecarga
Н	igual a (q / γ) .
	profundidade, a partir da crista, abaixo da qual as tensões horizontais
h _c	obedecem a distribuição ativa.
Ι	coeficiente de forma e rigidez do elemento de carregamento
J	rigidez elástica axial da geogrelha
Κ	coeficiente de empuxo
k	módulo do modelo hiperbólico de Duncan et al. (1980) para carregamento
Κ	coeficiente de empuxo do método.
Ka	coeficiente de empuxo ativo = $tan^2(45 - \phi'/2)$
	coeficiente empuxo correspondente ao estado de tensão equivalente ao
K _c	acréscimo de tensão provocado pela compactação
	coeficiente de decréscimo do empuxo lateral para descarregamento sob
$K_{\Delta 2}$	condição K _o
Ko	coeficiente de empuxo no repouso, =1-sen¢'.
K _r	coeficiente de empuxo residual ao final da construção, conforme Figura 24
	módulo do modelo hiperbólico de Duncan et al. (1980) para
k _u	descarregamento
L	largura do rolo.
L	comprimento da amostra.
Λ	fator de rigidez do reforço
La	comprimento de ancoragem, além da superfície potencial de ruptura
Li	distância entre os pontos i e i+1.
L_{mob}	comprimento mobilizado.
Lo	comprimento inicial da amostra, em ensaio de faixa larga.
L _T	comprimento efetivo.
m	potência que ajusta a dependência da rigidez pela tensão.
n	expoente dos módulos do modelo hiperbólico de Duncan et al. (1980).

ν	coeficiente de Poisson do solo.
N _c	fator de capacidade de carga.
N_{γ}	fator de capacidade de carga de Rankine
vo	coeficiente de Poisson para condição K_o , = $K_o / (1+K_o)$
Nq	fator de capacidade de carga.
	coeficiente de Poisson para descarregamento, a partir da condição de
ν_{un}	repouso = $K_{\Delta 2} / (1+K_o)$
OCR	razão de sobreadensamento
	carga linear superficial imposta pelo rolo, igual ao peso do rolo mais a força
р	gerada pela vibração, geralmente considerada igual ao próprio peso.
Pa	pressão atmosférica
PAPMi	PAPMi: distância horizontal entre o ponto fixo A e o marco topográfico i
p ^{ref}	tensão de referência = 100 kPa
q	sobrecarga
	força máxima de operação do rolo (=160 kN para energia máxima de um
Q	rolo vibratório DYNAPAC CA25)
ρ	deslocamento da interface.
ρ	recalque na superfície da área carregada
R _c	relação entre área dos membros transversais e a área total da geogrelha.
R _d	somatório das reações do lado direito da geogrelha
R _e	somatório das reações do lado esquerdo da geogrelha
$R_{\rm f}$	razão de ruptura do modelo hiperbólico de Duncan et al. (1980).
σ'_h	tensão horizontal
$(\sigma'_h)_m$	tensão horizontal média na faixa de influência do reforço em questão.
σ(X)	desvio padrão do parâmetro X, igual à raiz quadrada da variância V(X)
σ'_{hm}	tensão horizontal induzida pela compactação.
	máxima tensão horizontal que seria induzida pela compactação em caso de
σ' _{xp,i}	deformação lateral nula
$\sigma'_{zc,i}$	máxima tensão vertical devido à compactação
σ_1	tensão principal maior
σ ₃	tensão principal menor.

σ_3	tensão confinante do ensaio de compressão triaxial
σ_{a}	valor assintótico da tensão desviadora
σ_{d}	tensão desviadora
$\sigma_{\rm f}$	tensão desviadora na ruptura.
$\mathbf{S}_{\mathbf{i}}$	índice de rigidez relativa solo reforço
σ'_n	tensão normal na interface.
σ'_n	tensão normal atuante no plano da geogrelha
σ	tensão uniformemente distribuída na superfície
$S_{\rm v}$	espaçamento vertical
$\mathbf{S}_{\mathbf{v}}$	espaçamento vertical dos reforços
σ'_z	tensão vertical, no ponto de interesse, ao final da construção.
τ	tensão tangencial na interface
Т	força de tração nos elementos longitudinais
τ	tensão cisalhante na interface solo-geogrelha
τ	tensão cisalhante na interface solo-geogrelha
Т	força horizontal total necessária à estabilização do talude reforçado
T_1	máxima resistência de atrito nos elementos longitudinais
T_2	máxima resistência de atrito nos elementos transversais
T_3	máxima resistência passiva do solo contra os elementos transversais
T _d	resistência à tração de projeto do geossintético
T _{máx}	tensão horizontal de tração máxima no reforço
$T_{m \acute{a} x}$	máxima carga distribuída, por unidade de largura, atingida durante o ensaio
$T_{m\acute{a}x}$	máxima tensão de tração no reforço, ao final da construção
$\tau_{m\acute{e}d}$	tensão cisalhante média na interface
	tensão cisalhante equivalente média na interface solo-geossintético, no
t _{mob}	comprimento mobilizado
T_{po}	resistência máxima ao arrancamento
T_{po}	resistência máxima ao arrancamento
T_{po} - T_r	força efetiva atuante no comprimento LT
u _i	deslocamento horizontal do tell-tale instalado no ponto i
u _i :	deslocamento da face na altura do marco i, no instante t

u_{i+1}	deslocamento horizontal do tell-tale instalado no ponto i+1
$V(u_{m\acute{a}x})$	variância do deslocamento horizontal máximo da face do muro
$V(X_i)$	variância de X _i
ω	inclinação da face em relação à horizontal
$\Omega(X)$	coeficiente de variação do parâmetro X
\mathbf{X}_1	afastamento da força de arrancamento em relação ao eixo da amostra.
$\psi_{\rm m}$	ângulo de dilatância mobilizado
Z	profundidade considerada.
	profundidade crítica, a partir da qual a tensão vertical efetiva devido ao peso
Zc	do solo sobrejacente impede a ruptura plástica do solo.
Zeq	profundidade equivalente